Effect of initial core temperature on hyperthermic hyperventilation during prolonged submaximal exercise in the heat.

نویسندگان

  • Bun Tsuji
  • Yasushi Honda
  • Naoto Fujii
  • Narihiko Kondo
  • Takeshi Nishiyasu
چکیده

We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of hyperthermic hyperventilation during passive heating and 1 prolonged light and moderate exercise in the heat

31 Elevation of core temperature leads to increases in ventilation in both resting subjects and 32 those engaged in prolonged exercise. We compared the characteristics of the hyperthermic 33 hyperventilation elicited during passive heating at rest and during prolonged moderate and light 34 exercise. Twelve healthy men performed three trials: a rest trial in which subjects were passively 35 heat...

متن کامل

Comparison of hyperthermic hyperventilation during passive heating and prolonged light and moderate exercise in the heat.

Elevation of core temperature leads to increases in ventilation in both resting subjects and those engaged in prolonged exercise. We compared the characteristics of the hyperthermic hyperventilation elicited during passive heating at rest and during prolonged moderate and light exercise. Twelve healthy men performed three trials: a rest trial in which subjects were passively heated using hot-wa...

متن کامل

Relationship between ventilatory response and body temperature during prolonged submaximal exercise.

We examined whether an increase in skin temperature or the rate of increase in core body temperature influences the relationship between minute ventilation (Ve) and core temperature during prolonged exercise in the heat. Thirteen subjects exercised for 60 min on a cycle ergometer at 50% of peak oxygen uptake while wearing a suit perfused with water at 10 degrees C (T10), 35 degrees C (T35), or ...

متن کامل

Voluntary suppression of hyperthermia - induced hyperventilation mitigates the 1 reduction in cerebral blood flow velocity during exercise in the heat

31 Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce 32 arterial CO2 pressure (PaCO2) and, in turn, cerebral blood flow (CBF) and thermoregulatory 33 response. We investigated 1) whether humans can voluntarily suppress hyperthermic 34 hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on 35 PaCO2, CBF, sweating and skin ...

متن کامل

Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 302 1  شماره 

صفحات  -

تاریخ انتشار 2012